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The superstructure of cubic SiP207 has a volume 27 times as large as the substructure of this com- 
pound. Because conventional methods failed in solving the superstructure, computer simulation of 
the structure was applied. Computer simulation depends on the accurate prediction of individual inter- 
atomic distances in a structure and on an appropriate weighting scheme. The predicted distances are 
treated as observations in a distance least-squares refinement, in which the positional coordinates of the 
atoms are varied until the calculated distances conform to the predicted values. Cubic SiP20, (a = 22.418 
A, space group Pu3, Z = 108, D, = 3.22) has 50 atoms in the asymmetric unit. The initial R-value for the 
simulated structure was 0.18, which dropped to 0.061 after three cycles of least squares refinement using 
F obrd = 1382. In the substructure, all P-O-P angles in the diphosphate groups are straight because of 
symmetry requirements, and the angles P-0-Si are 164”. In the superstructure, the average angle P-O-P 
is 150”; the average P-0-Si angle is 149”. The tendency to decrease these angles may be responsible for 
the formation of the superstructure. However, two diphosphate groups retain, even in the superstructure, 
the 180” configuration. Such a feature is usually only observed in high temperature polymorphs and is 
explainable as a positional disorder of bent PzO, groups, or by the assumption of a highly anisotropic 
motion of the bridging oxygen atom. The silicon atoms in cubic SiP20, are octahedrally coordinated, as 
they are in the two monoclinic polymorphs of SiPz07. However, the three modifications are topologically 
distinct from each other as can be proved by considering the three-dimensional nets on which the three 
structures are based. 

Introduction and most likely the atoms in them carry only 
It is presently not possible to calculate from fractions of their formal charges [electroneutral- 

first principles the details of an inorganic crystal ity postulate (2)]. In order to avoid the problems 
structure, that is, the coordinates of its atomic inherent in the use and interpretation of different 
positions and its unit cell parameters. Even the bonding models (ionic versus covalent), it has 
Born model, based on electrostatic interactions been proposed (3) to take a positivistic approach 
between ions, which can be of use in special and to rely only on the crystal chemical infor- 
applications such as the calculation of hydrogen mation which is reasonably certain, namely on 
atom positions in hydrogen containing com- the interatomic distances. The distances between 
pounds (I), seems to be of limited value as a atoms in crystalline structures can be predicted 
general method of calculating crystal structures. with sufficient accuracy if one takes into consider- 
The main problem with the Born model is that ation the coordination numbers of both anions 
most compounds which can be treated as being and cations (4), the extended electrostatic valence 
ionic are so to a first approximation only, rule (5,6), and the effects of shared edges between 
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different coordination polyhedra (3). For a 
given trial structure of a given compound, a set 
of interatomic distances can be predicted and 
used as input into a distance least-squares re- 
finement (DLS, (7)] as long as the number of 
predicted distances exceeds the number of para- 
meters. In DLS the predicted interatomic dis- 
tances are used as observations, and the positional 
parameters are adjusted in such a way that the 
calculated interatomic distances in the crystal 
structure correspond as closely as possible to 
the predicted distances. If the weights assigned 
to the predicted cation-anion distances are chosen 
proportional to the bond strengths of these 
distances, and the weights assigned to the anion- 
anion distances are taken to be small when com- 
pared with the weights given to the cation-anion 
distances, then the DLS refinement is similar 
to a simple force model, which takes account of 
the different strengths of the different bonds in 
a structure. The lengths of the bonds represent 
the lengths of elastic springs, the weights corre- 
spond to the restoring forces. If one chooses the 
predicted distances only within the coordination 
polyhedra, the method is equivalent to crystal 
structure model building using elastically flexible 
coordination polyhedra. Therefore it is proposed 
to call this method computer modeling or com- 
puter simulation of crystal structures. 

The method has been applied so far to (a) 
the refinement of crystal structures which are 
well known from X ray diffraction studies in 
order to compare the simulated structures with 
the actual structures [framework silicates (7); 
olivine-type Mg,SiO, (3); and a series of un- 
published studies, Baur, 19711, (b) the refinement 
of a crystal structure for which only inaccurate 
powder diffraction data were available (8), (c) 
the refinement of a pseudosymmetric structure 
which could not be deduced directly from the 
X ray data [hydrated NaA (9)], (d) the refinement 
of hypothetical structures in order to compare 
them with the observed polymorphs of the same 
chemical composition [hypothetical Mg,Si04 
phases (3)], and (e) the refinement of crystal 
structures which cannot be studied by diffraction 
methods at the conditions under which they are 
stable [high pressure phases of Mg,SiO, (3)]. 

In this paper we are applying computer model- 
ing of a crystal structure to the solution of the 
superstructure of cubic SiP20,, a problem which 
could not be solved with more conventional 
methods. The diphosphates of Si, Ge, Sn, Pb, 
Ti, Zr, Hf, Ce, and U form a series of isostruc- 

tural cubic crystals. Levi and Peyronel (10) 
determined from X ray powder diffraction data 
the structure of ZrP,O, (a= 8.20 A, space 
group Pu3) and found SiP,O, to be isostructural. 
The result of this structure determination was 
unusual in two respects: Zr (and therefore Si) 
have an octahedral six-coordination, and the 
angle around the bridging oxygen atom of the 
diphosphate group is 180”, since it is located in 
a center of symmetry. Viillenkle et al. (11) 
showed, however, that Levi and Peyronel had 
apparently determined only a substructure. 
They found in single crystal X ray photographs 
of GeP,O, superstructure reflections which 
tripled the unit cell edge of these compounds, 
thus increasing the cell volume 27 times. Hagman 
and Kierkegaard (12) prepared single crystals 
of ZrP,O, and collected a complete set of three- 
dimensional single crystal diffraction data which 
included the superstructure reflections. However, 
they refined only the substructure and have not 
reported since any work on the superstructure. 
Liebau et al. (13) prepared single crystals of 
cubic SiP,O,-AI and of two other closely 
related monoclinic polymorphs of SiP,O, which 
they called SiP20,-AI11 and SiP,O,-AIV. The 
crystal structures of the monoclinic polymorphs 
were subsequently determined (14, 1.5). 

Single crystals of cubic SiP,O,, prepared by 
0. W. Florke, were put at our disposal. We 
decided to attempt a solution of the superstruc- 
ture of cubic SiP20, in order to clarify the rela- 
tionship of cubic SiP,O, to the monoclinic 
polymorphs of SiP,O,, to resolve the question 
of the linear P-O-P bonds, and to study one 
further example of Si in octahedral coordination. 

Experimental 

Single crystals of cubic SiP,O, were grown by 
transport reaction from material of the compo- 
sition Li 0&1 Si 0.25 ,,75P207 in a platinum tube. 
The hot part of the tube with the sample was 
held at 1000°C for three days, the colder part of 
the tube had a temperature of 960°C. The 
colorless crystals found in the colder part of the 
tube were nearly spherical in shape and showed 
a large number of different faces. A microprobe 
analysis of some of the crystals showed a ratio 
of SiO,:P,O, = 1:0.99. The crystals did not 
contain any aluminum. Table I gives crystal 
data and the details of data collection. The unit 
cell constant is based on the refinement of the 
setting of 12 reflections which had been centered 
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TABLE I 

CRYSTAL DATA AND DETAIU OF DATA COLLECTION’ 

Space group 
Crystal diam (cm) 
b(MoKn) (cm-‘) 
PR 
ana.(o~ 
Number of nonunique Ihrl 
Number of unique IhLl 
Number of Zhrl = 0 
Number of Zhrl used in refinement 
Average relative intensity (zeros included) 
Alerage relative intensity (zeros excluded) 
Rwmucture) 
&su,mrueture) 
wR(supc:rstructurc) 

Substructure Superstructure 
(S-structure) Both (X-structure) 

7.473(l) 22.418(2) 
417.3(3) 11267(3) 

4 108 
202.3 

3.22 
Pa3 
0.02 

13.0 
0.13 

48 
9824 

108 2935 2827 
8 1553 1545 

100 1382 1282 
28 5 4 
30 11 9 

0.137 
0.031 0.061 0.069 
0.046 0.066 0.071 
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a Throughout this paper, the number in parentheses, following a numerical value, indicates 
the estimated standard deviation in units of the least significant digit. 

on an automatic 4-circle X ray diffractometer. 
Systematic extinctions (Okl present only with 
k = 2n) led to space group Pa3. 

Intensity data were collected on an automatic 
4-circle X ray diffractometer using Zr-filtered 
MoKo! radiation (A = 0.7107 A), 8-28 step-scan 
mode with 50 steps of O.Ol”, 1 set counting time 
per step and 5 set background counting time. 
A list of computer programs used in the course 
of the work is given by Baur and Khan (16). In 
addition, the Fourier program, SFS, by Neukster 
and Biedl (unpublished) and the program DLS 
(distance least-squares) by Meier and Villiger 
(7) were used. The measured intensities were 
corrected for Lorentz-polarization effects, and 
the individual values of the squared structure 
amplitudes and their standard deviations were 
averaged for equivalent reflections. Since the 
crystal used for data collection was almost 
spherical in shape and the value of pR was small, 
an absorption correction was not necessary. 
The calculation of standard deviations o(Z) 
is described by Corfield, Doedens, and Ibers 
(17). Any intensity measured to be less than two 

times its standard deviation was considered to be 
zero. 

Solution of the Structure 

The atomic coordinates given by Levi and 
Peyronel (10) for the substructure of the iso- 
morphous compound ZrP,O, were used as 
starting parameters for a least-squares refinement 
of the substructure of SiP,O,. Only those reflec- 
tions were used in the refinement which had 
indices in the form h = 3n, k = 3n and 1= 3n, 
when referred to the supercell. Atomic scattering 
factors were taken from the International Tables 
for X ray Crystallography (18). The function 
minimized was Cw(lFOl - lFcl)2, with F,, and F, 
being the observed and calculated structure 
amplitudes. The weight w was defined as (l/o*)F,,. 
The refinement converged after 3 cycles at an 
R-value of 0.137. The results are given in Table II. 

As could be expected, the P-O and Si-0 
distances in the substructure, in which three of 
the four crystallographically different atoms lie in 
special positions, are appreciably shorter than 
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TABLE II 

REFINEMENTOFTHESLJBSTRUCTUREOF SiP,O, 

1. Positional and thermal parameters with estimated standard 
deviations. The x, y, z are fractions of the cell edge, B is in A”. 

Position x(a) A4 m B(5) 

Si 4(a) 0.0 0.0 0.0 1 J(2) 

&l) 
W 0.3833(5) 0.3833(5) 0.3833(5) 1.4(l) 
4(b) 0.5 0.5 0.5 1W) 

O(2) 24(d) 0.441(2) 0.202(2) 0.408(2) 5.8(4) 

2. Interatomic distances and angles. 

Distance (A) Angle (“) 

Si-O(2) (6x) 
0(2)-W) (6x1 
W-W) (6x1 
0(2)-o(2) (3 xl 
P-O(l) 
P-O(2) (3 x) 
W-O(2) (3x) 
0(1)-0(2)(3x) 

1.72(2) 
2.40(2) O(2)-Si-O(2) (6x) 89(l) 
2.45(2) O(2)-Si-O(2) (6x) 91(l) 
3.43(2) O(2)-Si-0(2)(3x) 180(l) 
1.51(2) P-0(1)-P 180(l) 
1.43(l) P-O(2)-Si 164(l) 
2.37(2) 0(2)-P-0(2)(3x) 112(l) 
2.37(2) 0(2)-P-O(1) (3x) 107(l) 

they should be when compared with accepted 
values. The fact that the substructure is an average 
structure is also characterized by the high iso- 
tropic temperature factors of all atoms. Since the 
temperature factors of the oxygen atoms were 
relatively higher than those of the metal atoms, 
differences in atomic positions between sub- 
structure and superstructure were expected to be 
larger for the oxygen atoms. 

The Fourier synthesis of the substructure 
corresponds to an averaging of the 27 subcells 
of the supercell. Every peak in the subcell, 
therefore, is a superposition of 27 different atomic 
positions of the superstructure. The unraveling of 
these 27 positions and their correct assignment 
to one of the 27 subcells is an impossible task. 
This situation differs sharply from the problem 
faced by Katz and Megaw (19) in their solution 
of the pseudosymmetric structure of KNb03, 
where every superposed atom had to be split 
into two half-atoms. We attempted this approach, 
nevertheless, hoping that some of the asym- 
metries in the shapes of the oxygen atoms of the 
substructure could be interpreted as atomic posi- 
tions in the superstructure. None of the trial 
models succeeded, however. The R-values re- 
mained at about 0.60 and the least-squares 

refinements diverged as was apparent from the 
chemically impossible interatomic distances re- 
sulting from these refinements. As has been 
pointed out by Katz and Megaw (29) a direct 
automatic refinement cannot be started from 
an average structure because the assumption 
that the structure factors vary linearly with the 
atomic coordinates “throughout the range 
examined, is certainly not valid when the range 
includes special values”. Direct methods of 
phase determination were not tried. The signs 
of the strong reflections (from the substructure) 
were known already, and the chances of deter- 
mining the phases of the superstructure reflections 
were considered to be extremely small. Computer 
modeling, however, appeared to be applicable: 
a trial structure was available since the topology 
of the superstructure is known from the sub- 
structure. The predicted input distances (Table 
III) were based on the following reasoning. 
The P-O distances to the terminal (0,) and the 
bridging (0,) oxygen atoms of the P,O, group 
should be 1.5 1 and 1.57 A based on Shannon and 
Prewitt’s (4) radii and on the extended electro- 
static valence rule (5). In SiP20,-AI11 and SiP20,- 
AIV, average distances of 1.49 and 1.59 A have 
been observed for P-Or and P-O,, respectively. 
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TABLE III 

PREDICTED INTERATOMIC DISTANCES AND CORRESPONDING 
WEIGHTS USED AS INPUT INTO THE DLS-REFINEMENT 

Distance (A) Weight 

Si-0 1.76 0.67 
tO-OLhCd,al 2.49 0.30 
P-On 1.58 1.25 
P-O= 1.50 1.25 
(OT-OT)*Ctr.hedmI 2.50 0.30 
mr-oT)tClrahedrPL 2.46 0.30 
P-OS’ 1.54 1 .oo 
(OB-OTLah&L~ 2.43 0.30 

D Distances involving oxygen atoms O(5) and O(6) in 
special positions. 

We chose as input the means of these calculated 
and observed distances. For the P,O,-groups 
with the bridging oxygen atoms in a special 
position [O(5) and O(6)], P-OB was chosen to be 
1.54 A in accord with the value observed in 
j&Cu,P20, (20) where the angle P-O-P is also 
180”. The distances 0,-O, and Or-OT in the 
tetrahedra were chosen to differ slightly from 
each other because of the observations made on 
condensed phosphates (5). The distance Si-0 
was taken from rutile-type SiO, (21) and cor- 
rected for the different coordination numbers of 
the oxygen atoms in these two compounds. 
The distance O--O in the Si06 octahedron was 
calculated assuming an angle 0-Si-0 of 90”. 
The weights assigned to the Si-0 and P-O 
distances were based on the electrostatic bond 
strengths of these bonds. The weight for P-O, 
was reduced slightly because of the greater un- 
certainty involving this bond length. The O-O 
distances were uniformly given weights of 0.30 
which is higher than the weights assigned to the 
polyhedral edges in the simulation of the Mg,SiO, 
polymorphs (3) because we wanted the polyhedra 
to remain relatively rigid. A total of 173 crystallo- 
graphically different distances was predicted 
in this way, while only 134 positional coordinates 
had to be determined. 

The function minimized in the DLS-refinement 
was ~j Cm,n [w”‘(Dl;il, - BL’J’)]2, where BL’j’ 
is the predicted interatomic distance, Dlnjl,, 
the actual distance between atoms m and n, 
w(j) the weight assigned to this interatomic 
distance. Nine cycles of DLS refinement gave a 
chemically reasonable model of the structure 

(D-structure). In this case, only interatomic 
distances within each coordination polyhedron 
had been predicted, but distances between atoms 
in different polyhedra also had the expected 
values. A structure factor calculation for the 
D-structure showed an R-value of 0.181, a new 
least-squares refinement with the observed struc- 
ture amplitudes as observations converged after 
three cycles, in which 185 parameters were varied, 
at R equal to 0.061. 

The values of IF01 and F, for the X-structure 
are listed in Table IV, the 1553 unobserved 
reflections are not included. The high R-value of 
0.308 for all 2935 reflections is caused by the fact 
that more than 50% of the reflections are un- 
observed (F, = 0) ; all calculated structure ampli- 
tudes for unobserved reflections, however, are of 
a magnitude comparable to the weakest observed 
structure amplitude. The final positional and 
thermal parameters of the superstructure (X- 
structure) and the positional parameters of the 
substructure (S-structure) and the D-structure 
are listed in Table V. Table VI gives the mean 
differences between atomic positions and between 
interatomic distances in the three structures. 

Description and Discussion of the Crystal 
Structure 

All silicon atoms in cubic SiP,07 are octa- 
hedrally six-coordinated ; all phosphorus atoms 
are tetrahedrally coordinated by oxygen atoms. 
The PhOSphdte tetrahedra share one of their 
vertices with a second tetrahedron, thus forming 
diphosphate groups [P20,]-4. All the oxygen 
atoms are two-coordinated: they are bonded 
either to two phosphorus atoms or to one phos- 
phorus and one silicon atom each. The Si atoms 
are arranged approximately face centered (rela- 
tive to the subcell) and so are the bridging oxygen 
atoms of the PzO, groups: the Si atoms and the 
bridging oxygen atoms are in positions corres- 
ponding to the Na and Cl positions in the NaCl- 
type structure. Every unit cell of the super- 
structure contains 27 such NaCl-type cells. 
From this description it is obvious that every 
diphosphate group is surrounded by six different 
octahedral groups, while every octahedral group 
is surrounded by six diphosphate groups. The 
terminal oxygen atoms of a staggered diphos- 
phate group are similarly arranged as in an 
octahedral group which is elongated along one 
of its three-fold axes. Therefore, we can view 
the cubic SiP20, structure also as a distorted 
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TABLE 1V 

OBSERVED AND CALCULATED STRUCTURE FACTORS (x0.3) 

: 

: 

: 

: 

: 

: 
6 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

i 

: 

i 

: 

: 

: 

: 

: 
.1 

: 
, 

i 

: 
7 

: 

: 
7 

: 
7 

i 

: 

: 

: 

: 

: 

: 
8 

: 
I 

: 

: 
8 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 



STRUCTURE OF SILICONDIPHOSPHATE 75 

TABLE V 

POSITIONAL AND THERMAL PARAMETERS OF THE X-STRUCIWRE, AND POSITIONAL PARAMETERS OF THE S-STRUCTURB 
AND THE D-STRUCKJRE 

P(l) 

P(2) 

PO) 

P(4) 

P(5) 

~(6) 

P(7) 

P(8) 

P(9) 

P(lO) 

P(l?) 

Si(l) 

sit21 

sit31 

U(4) 

U(5) 

di(6) 

O(l) 

O(2) 

00) 

O(4) 

O(5) 

O(6) 

O(7) 

O(8) 

O(9) 
otro) 

otrrj 

O(W) 

O(13) 

O(14) 

0(?5) 

0(16) 

O(l7) 

O(l8) 

O(l9) 

O(20) 

OC21) 

O(22) 

O(23) 

OW) 

O(25) 

o(26) 

O(27) 

O(28) 

O(29) 

O(30) 

O(31) 

0(>2) 

005) 

, Position 

24(d) 
II 

I 

” 

1 

* 

II 

* 

8(c) 
0, 

I 

24(d) 
I 

I 

I 

8(c) 

4(a) 

24(d) 
* 

I 

I* 

8(c) 

4(b) 
24(d) 

,I 

” 

8. 

I, 

I 

” 

” 

I 

* 

I 

” 

I 

II 

I 

” 

II 

I 

14 

n 

II 

n 

n 

n 

II 

n 

* 

X(G) r(o) 

0.4619(Z) 0.1211(2) 

0.4759(2) 0.4528(23 

0.785912) 0.1230(2) 

0.7965(2) 0.7910(2) 

0.1259(2) 0.4728(2) 

0.12&(2) o.7851(2) 
0.46?8(2) 0.7883(2) 
0.4709(21 o.&lotz) 

0.7997(2) 0.7997(2) 
0.4602(2) 0.4602(2) 
0.11%(2) 0.1196(2) 

0.3372(Z) -0.0019(2) 

0.3221(2) 0.3393(2) 
-o.cQ&t2) 0.3355(2) 

0.3432(2) 0.6612(2) 

0.354Ot2) 0.3340(2) 

0.0 0.0 

0.4930(4) 0.‘1454(4) 

0.8130(4) 0.1770(4) 

0.510714) 0.4786(4) 

0.1852(5) 0.4997(4) 

0.1592(5) 0.?592(5) 

0.5ooa 0.5000 

0.1167(5) 0.0591(4) 
0.4867(4) 0.0597(4) 
0.1425(5) 0.3952(4) 
0.?627(41 0.0799(4) 

0.4996(k) 0.3901(4) 

0.4937(4) 0.0765(4) 

0:1408(4) 0.4?06(4) 

0.4537(4) 0.4021(4) 

0.8075(4) 0.0655(4) 

O.t418(5) 0.7wJc51 

0.1274(5) 0.0719(5) 

0.8185(5I 0.7293(5) 
0.8162(4) 0.0769(4) 

0.1420(5) o.7289(5) 

0.8217(4) 0.7361(4) 

0.‘1326(5) O.‘+D63(5) 

0.1436(4) 0.7195(5) 

0.5020(41 0.7362(4) 

0.4630(4) 0.7254(4? 

0.4889(4) o.i086(4) 

0..5048(4) 0.7457(4) 
0.4923(4) 0.0692(4) 

0.8364(4) 0.0753(4) 

0.8121(5) 0.3997(4) 

0.78+5(4) o.3976(4) 

0.&62(5) 0.4065(5) 

0.8125(4) 0.7175(5) 

r.(G) 

0.1292(2) 

o.r281(2) 

0.?354(2) 

0.1337(2) 

0.7%5(2) 
0.4604(2) 

0.4653t2) 

0.7834(2) 

0.7997(r) 

0.4602(2) 

0.1196(2) 

-0.0054(2) 

-0.0032(2) 

0.6519(z) 

0.3295(2) 

0.3340(2) 

0.0 

0.1886(4) 

0.1714(5) 

o.l829(4) 

0.8221(C) 

0.1592(5) 
0.5000 

0.1476(4) 

0.11%(4) 
0.1171(4) 

0.4787(4) 

0.1203(4) 

0.4920(5) 

0.452o(5) 

0.4923(4) 

0.1629(4) 

O-1272(4) 

0.8058(4) 

0.7386(5) 

0.8185(4) 

0.7946(5) 

0.8041(4) 

0.7946(5) 

0.4582(S) 
0.1187(4) 

6,4897(4) 

0.8217(4) 

0.7997(4) 

0.7933(4) 
0.4924(4) 

0.1279(5) 

0.4659(4) 

0.8003(5) 

5.4702(5) 

ReO,-type in which alternately every other 
octahedron is replaced by a staggered ditetra- 
hedral group. This changes, of course, the stoi- 
chiometry because the two cations and the bridg- 
ing oxygen atom of the ditetrahedral group 
have to replace one cation in octahedral coordi- 
nation. 

h(ri x 

0.3(l) 0.4633 

0.4(l) 0.4799 
0.3(l) 0.7851 

0.4(l) 0.7%9 

0.3(l) 0.1247 

0.5(t) 0.1264 

0.4(l) 0.4609 

0.3(l) 0.4742 

0.X1) O.&O5 

0.2(l) 0.4603 

0.3(l) 0.1202 

0.5(l) 0.3397 
0.6(r) 0.3197 
0.4(l) -0.0093 
0.4(l) 0.3462 

O.?(2) 0.3338 

0.4(2) 0.0 

0.0(2) 0.4941 

0.6(L) 0.8121 

?.0(2) 0.5114 

0.7(2) 0.1848 

2.0(5) 0.1598 

?.1(51 0.5ooo 
0.9(2) 0.1181 

0.5(r) 0.4876 

0.4(2) 0.14o5 

O-5(2) 0.1618 

0.5(2) 0.5015 

0.6(P) 0.4935 
0.8(Z) 0.1426 

0.6(2) 0.4498 

0.7(2) 0.8~78 

0.712) 0.1446 

0.8(2) 0.1254 

1.0(2) 0.8200 

0.6(2) 0.8183 

O.?(2) 0.3427 

0.5(2) o.8219 

0.7(Z) 0.1297 

0.5(2) 0.1440 

.o.5(2) .’ 0.50,5. 

‘0.7X2) ‘:0.460d 

O.?(2) 0.4862 

0.6(2) 0.5091 

0.3(Z) 0.4907 
0.6(21 0.8404 

0.7(2) 0.8?05 

0.4(2) 0.7833 

0.6(2) O.&J67 

0.6(2) 0.8t30 

An alternate way of describing this structure 
is to view it as a three-dimensional net consisting 
of four-connected points (P atoms) and six- 
connected points (Si atoms). In this description 
the oxygen atoms can be ignored because they are 
only two-connected points and can be taken 
to be the connectors between the Si and P atoms 

I-atmctum 

Y z x , L 

0.1191 0.1272 0.4610 0.1277 OA277 
0.4515 0.1280 0.4610 0.4610 o..m7 
o.‘l2o2 0.1373 0.7943 0.7277 0.1277 
0.78% 0.1354 0.7943 0.7943 0.*277 
0.4747 0.7986 0.1277 0.4610 0.7943 
0.7828 0.4600 0.1277 0.+943 0.4610 
0.7853 0.4663 0.4610 o.7943 0.4610 
0.8027 0.7836 0.4610 0.7943 0.7943 
0.8005 0.8005 0.7943 0.7943 0.7943 
0.4603 0.4603 0.4610 0.4610 0.4610 
0.1202 0.1202 0.1277 0.1277 0.1277 

-0.0015 -0.0056 0.3333 0.0 0.0 

0.3412 -0.W46 0.3333 0.3333 0.0 
0.3351 0.6506 0.0 0.3333 0.6667 
0.6595 0.3298 0.3333 0.6667 0.3333 

0.3338 0.3338 0.3333 0.3333 0.3333 
0.0 0.0 0.0 0.0 0.0 
0.14x) 0.1864 0.5000 0.1666 0.1666 
0.1743 0.1734 0.8333 0.1667 0.1667 
0.4795 0.1845 0.5ooa 0.5ooo 0.1667 
0.4992 0.8263 0.1667 0.5om . 0.8333 
0.1598 o.15g8 0.1667 0.1667 0.1667 

0.5ooa 0.5wo 0.5om 0.5ooa 0.5ooo 

0.0600 0.1491 0.1470 0.0670 0.1360 

0.0578 0.1155 0.4800 0.06~) 0.1360 

0.3977 0.1190 0.7470 0.4010 0.7360 
0.0790 0.4814 0.1470 0.0670 0.4690 

0.3886 O.‘IZlO 0.4aw 0.4010 0.1360 

0.0779 0.4942 0.48lx 0.0670 0.469O 

0.4147 0.4537 0.1470 0.4010 0.4690 

0.4040 0.4949 0.4800 0.4010 0.4690 

0.0649 0.1673 0.8140 0.0670 0.138 

0.7188 0.‘124* 0.‘1470 0.7340 0.1360 

0.0740 0.8059 0.1470 0.0670 0.8030 

0.7270 0.1397 0.8140 0.7340 0.1360 

0.0790 0.8185 0.8340 0.0670 0.8030 

0.7307 0.7957 0.1470 0.7340 0.8030 

0.7379 0.8107 0.8140 0.7340 0.8030 

0.4079 0.7975 0.2470 0.4010 0.8030 

0.7183 0.4594 0.1470 0.7340 0.4690 

.a.7382 0.1224 0.4800 0.7340 0.1360 

0.7240 0.4931 0.4800 0.7340 0.4690 

0.4091 0.8228 0.4800 0.4010 0.8030 
0.7488 0.8025 0.48oQ 0.7340 0.80~ 

0.0680 0.7934 0.4800 0.0670 0.8030 

0.0763 0.4942 0.8140 0.0670 0.4690 

0.3992 0.1295 0.8140 0.40?0 0.1360 

0.3998 0.4677 0.8140 0.4010 0.4690 

0.4314 0.8039 0.8740 0.4010 0.8030 

0.7174 0.4749 0.8140 0.7340 0.4690 
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FIG. 1. Representation of the substructure of cubic 
SiP207 as a (4,6) connected three-dimensional net. 
One unit cell (dashed) and its immediate surroundings 
are shown. 

(Fig. 1). Starting from any 4- or 6-connected 
point in this net, it is possible to return to the 
original point by going through a shortest 
complete circuit consisting of only 5 points: 
-P,-Si,-P,-PC-S&-P,-. Since all these puckered 
5-gons are topologically equivalent we can 
call this net a uniform (4,6) net, with the symbol 
(56)2(512), which means : there are twice as many 
four-connected points as there are six-connected 
points (see the subscript), also at every four- 
connected point six 5-gons have a common 
vertex, while at every six connected point 
12 5-gons have a common vertex (see the super- 
script). The symbol is analogous to the ones 
used by Wells in his papers on the geometri- 
cal basis of crystal chemistry (particularly Ref. 
22). His approach is useful for distinguishing 
topologically distinct nets. If two different crystal 
structures can be shown to be based on nets 
having different symbols, they must be topologi- 
tally distinct. Unfortunately, the reverse is not 
true: two topologically distinct nets could still 
have the same symbol. An investigation of SiP,O,- 
AI11 shows it to be based on a (4,6) net with the 
symbol (43.52.6), (44.54.64), while SiP,O,- 
AIV can be reduced to a (4,6) net with the symbol 
(4.54.6)2 (44.54.64). From this, it is obvious 
that the monoclinic polymorphs cannot be lower 
symmetry distortions of cubic SiP20, but are 
distinct polymorphs which could be formed from 

cubic SiP,O, only through a reconstructive 
transformation. While both SiP,O,-AI11 and 
SiP20,-AIV are based on nets containing 
shortest circuits consisting of 4, 5 and 6 four- or 
six-connected points, they still are different from 
each other as can be seen from the surrounding 
of the four-connected points: in SiP,O,-AIII, 
three 4-gons are meeting at the tetrahedral point; 
in SiP20,-AIV there is only one 4-gon adjacent 
to the 4-connected point. Furthermore, in 
SiP20,-AIV, some of the 6-gons are of the type 
-P,-S&-P,-Si,-PC-S&-P,- with alternating 4- and 
6-connected points, while, in SiP,O,-AIII, all 
6-gons are of the type -P,-Pb-Si,-PC-P,,-S&,-Pa-. 

In the superstructure, only two atoms are 
located exactly at the same positions in which 
they are situated in the substructure: O(6) and 
Si(6), which are in the supercell in l/2, l/2, l/2 
and 000. All other atoms have moved from their 
substructure positions (Fig. 2). The mean dis- 
placement of the atoms is 0.40 A, whereby the 
oxygen atoms have moved on the average 0.48 A 
(ranging from 0.16 to 0.79 A), while the P and Si 
atoms have moved on the average 0.23 A (ranging 
from 0.03 to 0.38 A). No less than 16 or almost 
one half of the oxygen atoms have been displaced 
by one-half Angstrom or more out of their 
positions in the averaged structure. The displace- 
ments are such that the angle P-O-P which is 
180” in the substructure now ranges from 
144 to 149” (except for the diphosphate groups 
in special positions), while the angle P-0-Si, 
which is 164” in the substructure, is assuming 
values from 137 to 173” (mean 149”) in the super- 

I 
0 0 1 2 ai 

I 
lakubj 

FIG. 2a. 
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0 

1 0-i 1 I 
1130 2/3a la 

0 

FIG. 2. (a) Polyhedral representation of one layer (close to x equal zero) of substructure of cubic SiP207. (b) The 
same for superstructure of cubic SiPz07. (c) Layer of cubic SiPZOT close to x equal l/6. In the case of (b) and (c), 
one half of the unit cell is presented. The deviations of the superstructure from the average structure are clearly visible. 
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structure. It appears, therefore, that the super- 
structure allows values of the P-0-Si and P-O-P 
angles which are more in line with those observed 
in SiP20,-AIII, SiP20,-AIV, and other compar- 
able structures, while this would not be possible 
in the substructure. 

The D-structure and the refined X ray structure 
are very similar, which is apparent from the initial 
R-value of 0.18. One way to compare the D- 
structure with the X-structure is to look at the 
differences in the P-O, Si-0 and O-O distances 
within the coordination polyhedra between the 
two refinements: this difference is on the average 
0.023 A (Table VI). The corresponding average 
difference in the P-P and P-Si distances which 
are about 3.1 A in length (which means removed 
from each other by one bridging oxygen atom) 
is 0.022 A. If we compare, however, the distances 
of every atom in the D-structure to the corre- 
sponding atom in the X-structure, we find their 
average distance to be 0.075 A. This means that 
the simulated D-structure has reproduced very 
accurately the shapes and dimensions of the 
coordination polyhedra and their relative posi- 
tionsin the immediate vicinity of each polyhedron. 
The average deviation of 0.023 A has to be 
judged on the basis of the estimated standard 
deviations of the bond length in the X-structures 
which range from 0.006 A for P-P and P-Si 
to 0.014 A for the O-O distances. On the other 
hand, the average distance of 0.075 A from D- 
atom to X-atom tells us that the positioning 
of the polyhedra within the unit cell and, there- 
fore, the relative positions of further removed 

polyhedra from each other are not reproduced 
quite that precisely by the D-structure. This is 
not surprising since it shows us that the inter- 
atomic distances which have not been predicted 
and used as input into the DLS-refinement are 
not simulated as well as those which were used as 
DLS-input. This points to the possibility of 
improving the simulation procedure by entering 
into the model nonbonded interactions. One 
could include, for instance, van der Waals 
forces between oxygen atoms belonging to differ- 
ent polyhedra, analogous to the potential calcu- 
lations on molecular structures (23). 

The configuration of the P207 groups in the 
substructure is staggered, which means that the 
two triangles outlined by the terminal oxygen 
atoms at opposite ends of the diphosphate 
group are rotated by 180” relative to each other. 
In the superstructure only the diphosphate 
group around O(6) is required by symmetry to 
have a staggered configuration. The groups 
around O(1) and O(4) actually are very close to 
a staggered configuration, while the groups 
around O(2) and O(3) are in between a staggered 
and an eclipsed configuration, similar to the 
geometry of the P,O, group in SiP20,-AIV. 
The diphosphate group around O(5) can be 
called an almost eclipsed configuration, which is 
remarkable in view of the staggered configuration 
required by the substructure. This illustrates how 
severe the distortions of the superstructure are 
(Fig. 3), when compared with the substructure, 
which can be viewed as the idealized structure 
of cubic SiP,O,. The angles P-O-P vary for the 

TABLE VI 

MEAN DIFFERENCES BETWEEN THE X-STRUCTURE AND THE D- AND S-STRUCTURES OF 
CUBIC SiP,O,’ 

d(A) Range of d’s (A) 

Mean d(X, S) for (x, Y, &,SL 0.235 0.026-0.383 
Mean d(X, S) for (x, y, & 0.481 0.157-0.787 
Mean &X9 S) for (x, Y, Z)P,SLO 0.400 0.026-0.787 
Mean d(X, D) for (x. Y, Z)P,SI 0.058 0.003xm93 
Mean d(X, D) for (x, y, z)~ 0.084 0.023-0.154 
Mean 4X D) for (x, Y. Z)P,SI,O 0.075 0.003-O. 154 
Mean d(X, D) for P-O and Si-0 0.013 O.OOCLO.056 
Mean d(X, D) for O-O in edgqs 0.028 0.000-0.120 
Mean d(X, D) for P-O, Si-0, and O-O 0.023 0.000-0.120 
Mean d(X, D) for P-P and P-Si 0.022 0.000-0.059 

’ The ranges do not include the values involving atoms O(6) and Si(6), which are 
fixed by symmetry. 
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Pz-OS-P7 

P3-02-P4 

P11-05. P9 

d 32 @ 
PI-Ot-Pa 

ps-04- Ps 

FIG. 3. Views of the diphosphate groups projected along 
the P-P vectors. 

groups in general positions in the small range 
from 143.5 to 148.7”, which is distinctly and 
significantly higher than in SiP,07-AI11 (139.2”) 
and SiP20,-AIV (132.4”). The diphosphate 
groups centered around O(5) and O(6) have 
straight P-O-P angles. The isotropic temperature 
factors for these two oxygen atoms are the highest 
of all the atoms in cubic SiP20,, even though the 
difference to the average isotropic temperature 
factors of all atoms is not significant for O(6) 
and only possibly significant for O(5). The quality 
of the diffraction data and the prohibitive cost 
of refining 405 positional, scale, and temperature 
parameters, unfortunately, did not allow an 
anisotropic temperature factor refinement. How- 
ever, the fact that the temperature factors of 
O(5) and O(6) have by far the highest estimated 
standard deviations of all the atoms associated 
with them, points to the possibility that the therm- 
al movement of these two atoms is highly aniso- 
tropic. This would be in accord with the observa- 
tion made on the high-temperature form of 

copper diphosphate (20). In /M&P,O, (and in 
other isostructural thortveitite type P-phases), 
the major component of the thermal movement 
of the bridging oxygen atom is normal to the 
straight P-O-P linkage. This can be interpreted 
either as disorder of bent diphosphate groups 
or as real anisotropic movement. The question 
of whether the anisotropic thermal ellipsoid 
of the bridging oxygen atom in /I-Cu2P,0, 
represents a space or a time average could not 
be decided by Robertson and Calvo (20). We 
have even less information to go by in cubic 
SiP20,, and, therefore, we must leave this ques- 
tion open. 

The dimensions of the diphosphate groups 
agree with well established values known from 
other structure determinations (Table VII). 
The average values for all P-O, and P-OB 
bond lengths (Table VIII) agree well with the 
values predicted from the ionic radii and the 
extended electrostatic valence rule, which are 
1.51 a for P-Or and 1.57 A for P-O, [with 
PO, = 1.92 V.U. (valence units) and poB = 2.50 
v.u., see (5)]. The observed average tetrahedral 
edge lengths for Or-Or and 0,-O, are almost 
identical (Table VIII). Therefore, the difference 
in the observed mean tetrahedral angles Or-P- 
O, and O,P-0, (111.5” and 107.3”) must be 
due to the displacement of the P-atoms within 
the oxygen atom tetrahedron towards the sides 
which display the larger tetrahedral angles, that 
is towards the Or atoms. The same observation 
has been made previously for a number of ortho- 
phosphates (26). The relationship between bond 
angle and bond lengths can be expressed (5) 
as a linear relation : 

log[sin(E/2)] = a + b log(P-0) 

where E is the average over the three Or-P-O, 
or the three OB-P-Or angles in a tetrahedron, 
(p-0) is the corresponding average bond length 
of the sides of these angles, and u and b are the 
intercept and the slope of the regression equation. 
The correlation between bond angle and bond 
lengths is strong (Table IX) since 76% of the 
variation in bond angle can be explained by 
the dependence on the bond length. The slope 
and intercept found here for the SiP,07 poly- 
morphs are identical to the values found pre- 
viously for orthophosphates. 

The dimensions of the Si06 octahedra (Tables 
VIII and X) resemble most closely those found in 
SiP20,-AIV, where the average Si-0 bond length 
is 1.763 A. However, the average Si-0 bond length 
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TABLE VIII 

MEAN VALUES OF INTERATOMIC DISTANCES AND BOND 
ANGLES IN SiP20,, AVERAGED OVER THE UNIT CELL” 

Interatomic Bond 
distance (A) angle (“) 

P-O(m38) 1.524 
P-OT(m27) 1.506 
P-OB(rnl1) 1.577 
Or-OT(m27) 2.490 
OAdm27) 2.482 
O-O(m54) 2.486 
P-Si(m27) 3.130 
P-P(m6) 3.027 
Si-O(m27) 1.752 
O-O(m54) 2.478 
0-O(m14) 3.504 

Or-P-O=(m27) 111.5 
OB-P-OT(m27) 107.3 
O-P-O(m54) 109.4 
P-O-Si(m27) 148.8 
P-0-P(m6) 149.6 

0-Si-O(cm54) 90.0 
0-Si-O(rml4) 177.8 

‘The individual values from Tables VII and X were 
weighted according to their frequency within the unit cell. 
For further explanations, see footnotes to Tables VII and 
X. 

of 1.752 8, in cubic SiP,O, appears to be the 
shortest on record (24). The deviations of the 
individual O-O distances and of the 0-Si-0 
angles from the values expected for an ideal 
octahedron are small but appear to be real. The 
individual Si-0 bond lengths scatter appreciably 
(from 1.704 to 1.788 8). This scatter is almost 
eight times the estimated standard deviation 
of the bond length and should, therefore, 
be real. Bissert and Liebau (15) observed a 
similar scatter in SiP,O,-AIIL They attempted to 
correlate it with the variation in the Si-O-P 
angle, but found the evidence for such dependence 

to be inconclusive. We can confirm this: neither 
P-O, nor Si-0, nor the sum of P-O and Si-0 
show any pronounced dependence on the angle 
Si-O-P (Table IX). We tested also the dependence 
of P-O, on the angle P-O-P. This dependence 
can explain 35% of the variation in the P-O, 
bond length. However, this result depends 
critically on the interpretation of the straight 
P-O-P bridges. If we assumed these 180” angles 
to be the result of a space averaging (see above) 
then the actual P-O, bond lengths must be longer 
than indicated in Table VII for P-O(5) and P- 
O(6) : consequently, the correlation coefficient 
would be further reduced. 

Cubic SiP,O, proves to combine two unusual 
features. It has a few straight P-O-P angles, 
the way they are usually only found in high- 
temperature phases, and it has silicon in octa- 
hedral coordination against oxygen, which is 
commonly expected in high-pressure phases 
only. Liebau (24) has remarked on the tendency 
of silicon to assume six-coordination against a 
given ligand when the electronegativity of other 
elements present in the compound is high (ex- 
amples: SiP207, Si(OH)z- in thaumasite). For 
SiP,O,, the additional influence of charge balanc- 
ing [Pauling’s electrostatic valence rule (25)] 
has to be pointed out: if Si were not six-coordi- 
nated but instead four-coordinated, two of the 
seven oxygen atoms would be coordinated to one 
P atom only (sum of bond strengths, p. = 1.25 
v.u.), four would be coordinated to one Si and 
one P atom (p. = 2.25 v.u.) and one would be 
bonded to two P atoms (p. = 2.50 v.u.). Such 
a distribution of bond strengths obviously 
would be less balanced than the one observed 
in the actual structure, wherepO, = 2.50 V.U. and 

TABLE IX 

RESULTS OF WEIGHTED REGRESSION ANALYSES ON DATA FROM SiP20, POLYMORPHS’ 

Dependent variable Independent variable a b r % N 

log[sin(E/f)] 
(P-0) 
(P-0) 
(Si-0) 
(P-O) + (Si-0) 

log(P-0) 
+z P-O-P 
X P-0-Si 
3: P-0-Si 
3c P-0-Si 

0.11(2) -1.08(11) -0.87 76 30 
1.68(4) -0.0007(2) -0.59 35 15 
1.58(4) -0.0005(2) -0.30 9 39 
1.91(6) -0.0011(4) -0.38 15 39 
3.83(12) -0.0021(8) -0.39 15 39 

’ The average a is taken over the three Or-P-O, or the three Oa-P-OT angles in a tetrahedron. 
The intercept is a, while b is the slope of the regression equation; correlation coefficient, r; 
percent variation explained, %; number of pairs of values used, N. Data from cubic SiP207 and 
from SiP20,-AI11 and SiP20,-AIV have been used. 
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POT = 1.92 V.U. for the six terminal oxygen atoms. 
It is conceivable that in the present case this is 
also a contributing factor to the formation of a 
six-coordination around silicon. 

Note added in proof: Professor A. F. Wells was kind 
enough to point out to us that high-pressure SiPz [T. 
WADSTEN, Acta Chem. Stand. 21, 1374 (1967)], which is 
of pyrite-type, is based on the same net as cubic SiP20,. 
Topologically speaking SiP20, can be derived from SiPz 
by introducing an oxygen atom along every Si-P and P-P 
link. Of course the dimensions have to be altered too 
since for SiPz the cell constant a = 5.431& while the cor- 
responding cell constant of SiP207 equals 7.473 A. Both 
SiP,O, and the pyrite-type are based on the same net. 
We thank Professor Wells for his comments on the 
manuscript. 
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